Novaris

Lightning and Surge Protection Novaris Coaxial Protector

Reliability Analysis

Grant Paul

The purpose of this paper is to estimate the reliability of Novaris coaxial lightning protectors. This analysis is a valuable tool to assist in planning the economics and repair of coaxial protectors. Novaris protectors are exceptionally long lifetime devices, with lifetimes of over 10 million to billions of hours (Equating to a typical annual failure rate of

0.023%/year to an even less 0.00054%/year). Without a lightning protection device installed, the risk of equipment

Figure 1 - Novaris 3GHz Protector

damage from lightning ranges from a few precent up to 100% per year. Therefore, adding a high quality Novaris lightning protector will result in negligible additional equipment failure rates when compared to the level of damage that is prevented.

The reliability prediction for a Novaris lightning protector is calculated as the sum of a single connector pair (representing the input and output half connectors) and a protection component (required for the Gas-Discharge- Tube (GDT) based 3GHz and 6GHz series). Note that the CStub series are quarter wave

CN-MF-90-6 Pmax 40W

stub based protectors and therefore do not use such Fig a component. The Novaris Coaxial Surge Protector

Figure 2 - Novaris 6Ghz Protector

analysis assumes GDT maintenance is sufficient to eliminate 80% of the GDT component failures. Also, this analysis is for the Novaris protectors only. Due to the extensive military qualification of Novaris products, we use MIL-STD quality factors. Please add the mating connector halves with the appropriate quality factor for the cable connectors mating to the Novaris Coaxial Surge Protectors.

The model for the failure rate of a Novaris Coaxial Protector is given in equation 1:

1. λ Protector = λ Connector + λ Suppressor π_{MT}

Where λ Protector is the failure rate of the protector, λ Connector is the failure rate for a single connector pair (for the two halves of the Novaris protector, λ Suppressor is the failure rate of a single suppression component, and π_{MT} is the maintenance and technology factor. The value of π MT for is 0.2 for a Novaris Coaxial Protector with maintenance or 0.0 for a CStub since there is no suppression component. The reliability of Novaris coaxial protectors is summarized in the table 1 below. The failure rate is in failures per 106 hours. The mean time between failures (MTBF) is measured in hours. Note that this reliability does not include the significant failure rate reduction of attached equipment or system due to protection, or of the influence of transients on the failure of the protector.

The detailed calculations are provided in the following sections A & B.

Novaris PROTECTOR MODEL TYPES								
Failure Rate = 1/10 ⁶ hrs	3GHz – replaceable GDT		6GHz– repla	aceable GDT	CStub – quarter wave stub			
MTBF listed in hours		1						
Environment Reliability Parameters	Failure Rate	MTBF	Failure Rate MTBF		Failure Rate	MTBF		
Low Mating 50 ⁰ C and Ground Fixed	0.00227519	458,567,260	0.00217999	458,717,280	0.000615	1,626,061,260		
Low Mating 30 ⁰ C and Ground Mobile	0.00432445	203,523,092	0.00488845	204,563,092	0.003608	277,161,863		
High Mating, 50 ⁰ C and Ground Mobile	0.01735474	58,451,925	0.01710479	58,453,935	0.01476	67,750,768		
Moderate Mating 50 ⁰ C and Naval Surface	0.00935749	114,611,873	0.00849749	117,681,873	0.00615	162,601,626		
Moderate Mating, 70 ⁰ C and Aircraft	0.01427519	71,256,031	0.01421099	70,368,064	0.0082	121,951,202		

Table 1. Predicted Failure Rate and MTBF of Novaris Coaxial	Protectors
---	------------

A. λ Connector

For a general idea of connector reliability, the generic failure rates can be considered. The mated pair Generic Failure Rate (λ_g) is per MIL- HDBK-217F Notice 2, Appendix A, Section 15.1, RF Coaxial. The failure rate for several environments is given in table 2.

Table 2. Generic Failure Rate (/10⁶hours) Coaxial Connectors

Environment	G _F	G _M	Ns	A _{IC}
T _A (°C)	40	45	40	55
Failure Rate λ_g	0.00053	0.0046	0.0027	0.002

For more detailed predictions, the model provided in Connector Prediction per MIL-HDBK-217F/Notice 2 Section 15.1 is used. For a mated pair of connectors the failure rate is modelled by equation 2:

2. $\lambda_p = \lambda_b \pi_T \pi_K \pi_Q \pi_E$

Where λ_p =is the predicted failure rate in failures per 10⁶ hours, λ_b is the base failure rate, π_T is the temperature factor, π_K is the mating rate factor, π_Q is the quality factor, and π_E is the environment factor. The reliability predictions with typical factors are shown table 3:

72 Browns Rd, Kingston TAS, AUSTRALIA 7050 Tel +613 6229 7233 Fax +613 6229 9245

Single Connector	λb	π T	π κ	π Q	πE	λρ
Low Mating and Madium Tomporature and Cround Fixed		1.5	1	1	1	0.000015
Low Mating and Medium Temperature and Ground Fixed	Base FR	50 [°] C	<0.05	MIL	GF	0.000615
		1.1	1	1	8	0.002608
Low Mating and Temperature and Ground Mobile		GM	0.003608			
		1.5	3	1	8	0.01.170
nigh Mathig, Medium Temp. and Ground Mobile	Base FR	50 [°] C	<50	MIL	GM	0.01476
Madente Mating and Tana and Navel Confere	0.00041	1.5	2	1	5	0.00045
Moderate Mating and Temp and Naval Surface	Base FR	50 [°] C	<5	MIL	Ns	0.00615
Mandanata Matting High Tanan and Alamafa takahisad	0.00041	2.0	2	1	5	0.0082
Moderate Mating, High Temp and Aircraft Inhabited	Base FR	70 [°] C	<5	MIL	AIC	

Table 3 Predicted Failure Rate of Coaxial Connectors

Note that π_{κ} relates to average times between mating cycles. To illustrate the average mating or cycling time, the cycles per thousand hours has been converted to time between mating in table 4.

Connection Cycle Rate (for Maintenance or Deployment)	π	Cycles / 1000 hr	Avg. maximum time between mating
Permanently Installed / Rarely Cycled	1	0 <cycles<0.05< td=""><td>Over 24+ months</td></cycles<0.05<>	Over 24+ months
Infrequent	1.5	0.05 <cycles<0.5< td=""><td>3 months</td></cycles<0.5<>	3 months
Moderate	2	0.5 <cycles<5< td=""><td>14</td></cycles<5<>	14
Frequent	3	5 <cycles<50< td=""><td>24 hours</td></cycles<50<>	24 hours

B. λ Suppressor

For a general idea of the reliability of the shunting component, the generic failure rates for varistors are considered. The Generic Failure Rate (λ_g) per MIL-HDBK-217F Notice 2, Appendix A, Section 6.1, Suppressor/Varistor is given below. Note that the junction temperatures relate to power dissipation and cooling functions, whereas the protection component temperature is more closely related to the ambient temperature. The generic failure rates for several environments are shown in table 5.

Centerie Fanare Rat		ours, or .	ouppiess	
Environment	$\mathbf{G}_{\mathbf{F}}$	G _M	Ns	A _{IC}
Т _л (°С)	60	65	60	75
Failure Rate λ_g	0.023	0.040	0.035	0.075

Table 5 Generic Failure Rate (/10 ⁶ hou	rs) of Suppression Components
--	-------------------------------

For more detailed predictions the Connector Prediction model provided in MIL-HDBK-217F/Notice 2 Section 6.1 is used. The failure rate for a varistor is modelled by equation 3:

3. $\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_Q \pi_E$

Where λ_p =is the predicted failure rate, λ_b is the base failure rate in failures per 10⁶ hours, π_T is the temperature factor π_s is the voltage stress factor, π_c is the contact construction factor, π_Q is the quality factor, and π_E is the environmental factor.

Table 6 shows the failure rate prediction of a single suppression component with typical factors.

	<u></u>					•••••	
Single Connector	λb	π τ	π 5	π C	πQ	πE	λp
Low Mating and Medium Temperature and Ground	0.0013	2.2	.19	1	2.4	6	0.00782496
Fixed	Base FR	50 ⁰ C	<50%	Metal	JAN	GF	0.00782490
Low Mating and Temperature and Ground Mobile	0.0013	1.2	.19	1	2.4	9	0.00640224
	Base FR	30 ⁰ C	<50%	Metal	JAN	GM	0.00640224
High Mating Madium Tomp, and Ground Mahila	0.0013	2.2	.19	1	2.4	9	0.01173744
nigh Matrig, Medium Temp. and Ground Mobile	Base FR	50 ⁰ C	<50%	Metal	JAN	GΜ	
Mederate Mating and Temp and Naval Surface	0.0013	2.2	.19	1	2.4	9	0.01172744
	Base FR	50 ⁰ C	<50%	Metal	JAN	Ns	0.011/3/44
Moderate Mating, High Temp and Aircraft Inhabited	0.0013	3.9	.19	1	2.4	13	0.02005.406
	Base FR	70 ⁰ C	<50%	Metal	JAN	AIC	0.03005490

		- ·	-
Table 6. Predicted	Failure Rate of a	Suppression	Component

Page 4

72 Browns Rd, Kingston TAS, AUSTRALIA 7050 Tel +613 6229 7233 Fax +613 6229 9245